- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
03
- Author / Contributor
- Filter by Author / Creator
-
-
Zakharov, Dmitrii (3)
-
Pohoata, Cosmin (2)
-
Alon, Noga (1)
-
Bucić, Matija (1)
-
Cohen, Alex (1)
-
Sauermann, Lisa (1)
-
Zamir, Or (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Let$$p_{1},\ldots ,p_{n}$$ be a set of points in the unit square and let$$T_{1},\ldots ,T_{n}$$ be a set of$$\delta $$ -tubes such that$$T_{j}$$ passes through$$p_{j}$$ . We prove a lower bound for the number of incidences between the points and tubes under a natural regularity condition (similar to Frostman regularity). As a consequence, we show that in any configuration of points$$p_{1},\ldots , p_{n} \in [0,1]^{2}$$ along with a line$$\ell _{j}$$ through each point$$p_{j}$$ , there exist$$j\neq k$$ for which$$d(p_{j}, \ell _{k}) \lesssim n^{-2/3+o(1)}$$ . It follows from the latter result that any set of$$n$$ points in the unit square contains three points forming a triangle of area at most$$n^{-7/6+o(1)}$$ . This new upper bound for Heilbronn’s triangle problem attains the high-low limit established in our previous work arXiv:2305.18253.more » « lessFree, publicly-accessible full text available March 14, 2026
-
Pohoata, Cosmin; Zakharov, Dmitrii (, Duke Mathematical Journal)Free, publicly-accessible full text available February 15, 2026
-
Alon, Noga; Bucić, Matija; Sauermann, Lisa; Zakharov, Dmitrii; Zamir, Or (, Proceedings of the London Mathematical Society)Abstract An edge‐coloured graph is said to berainbowif no colour appears more than once. Extremal problems involving rainbow objects have been a focus of much research over the last decade as they capture the essence of a number of interesting problems in a variety of areas. A particularly intensively studied question due to Keevash, Mubayi, Sudakov and Verstraëte from 2007 asks for the maximum possible average degree of a properly edge‐coloured graph on vertices without a rainbow cycle. Improving upon a series of earlier bounds, Tomon proved an upper bound of for this question. Very recently, Janzer–Sudakov and Kim–Lee–Liu–Tran independently removed the term in Tomon's bound, showing a bound of . We prove an upper bound of for this maximum possible average degree when there is no rainbow cycle. Our result is tight up to the term, and so, it essentially resolves this question. In addition, we observe a connection between this problem and several questions in additive number theory, allowing us to extend existing results on these questions for abelian groups to the case of non‐abelian groups.more » « lessFree, publicly-accessible full text available April 1, 2026
An official website of the United States government
